

U

O

KEY EUROPEAN RESEARCH INFRASTRUCTURES AT YOUR SERVICE NOW AND IN FUTURE

Petri Kinnunen, Gilles Bignan, Gabriel Pavel and Victor Esteban-Gran

 CC20
 10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

OASIS

Open access to JRC infrastructure

Benefits to users and the ERA

- Make JRC Research Infrastructures available to external users
- Give access to material requesting nuclear licence
- Provide capacity building to Member States and neighbour countries
- Bridge the gap between science and Industry
- Dissemination of knowledge, education and training,
- Foster collaboration in Europe

Benefits to the JRC

- Expand JRC networking capabilities
- Enter into new key areas of research
- Maintain JRC scientific excellence
- Raise the value and visibility of JRC research infrastructures
- Improving JRC's testing procedures and instruments.

https://ec.europa.eu/jrc/en/research-facility/open-access

OASIS

<u>Objectives</u>: Promotion of training and mobility activities in support of maintaining nuclear competences through the open access to JRC research facilities.

<u>Start</u>: 07/02/2020 <u>Duration</u>: 48 months <u>Budget</u>: 750 000 €

- Free access to JRC nuclear infrastructure
- Financial Support to the user's stay can be offered to the selected projects (travel, accommodation, subsistence)
- Two schemes: short stay users and long stay users (primarily students)
- Fair and transparent method for allocating access

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

OASIS

JRC nuclear research infrastructure

EUFRAT Nuclear data (Geel, BE)

U

O

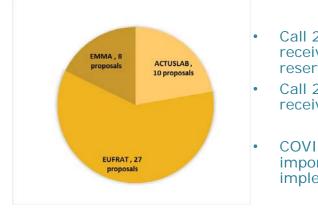
- 1. GELINA: Neutron time-of-flight for neutron measurements
- 2. MONNET: Tandem accelerator based fast neutron source
- 3. RADMET: Radionuclide metrology laboratories
- 4. HADES: **Underground laboratory** for γ-ray spectrometry

• ACTINET Actinides properties (Karlsruhe, DE)

- 1. PAMEC: Properties of actinide materials under extreme conditions
- 2. FMR: Fuel and materials research
- 3. HC-KA: Hot cells

EMMA Reactor materials (Petten, NL)

- 1. AMALIA: Ageing of Materials laboratory
- 2. LILLA: Liquid lead Laboratory
- 3. SMPA: Structural Materials Performance Assessment Laboratories
- 4. MCL: Micro-Characterization Laboratory
- 5. HFR-NB: High Flux Reactor Neutron Beams for residual stress measurements



10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

OASIS

Open access calls: 45 proposals granted

Call 2020: 43 proposals received (36 accepted, 6 reserve list (Userlab)

- Call 2021: 9 proposals received and accepted
- COVID restrictions had an important impact on the implementation

About 75 % of the projects include young researchers participation

TOURR

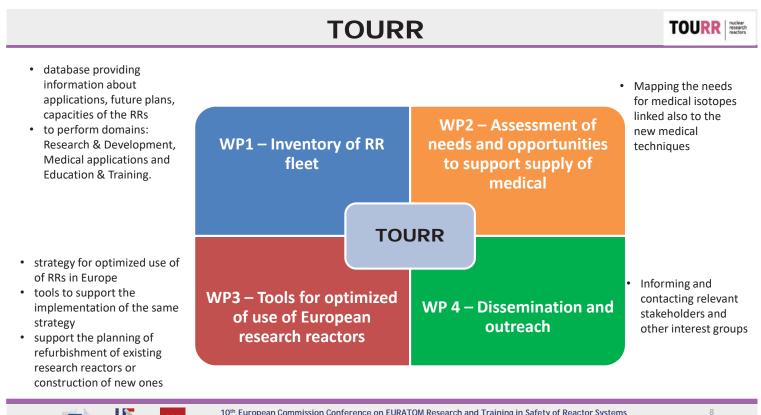
- Towards Optimized Use Of Research Reactors In Europe

- Duration 2020 2023
- 9 partners out of which 6 Research Reactors (RR) operators
- Response to the challenge of coordinating the optimization of the exploitation of available research reactors in Europe
- The primary objective is to develop a strategy for RRs in Europe and prepare the ground for its implementation with specific steps
 - I. Assessment of the current status of European RR fleet
 - II. Estimation of future needs of RR and neutron sources
 - III. Plan for the upgrade of the RRs fleet
 - IV. Plan to maintain the fleet
 - V. Developing tools for optimal use of RR fleet
 - VI. Rising awareness of decision makers and the public on the role of RR

TOURR nuclear resear

E.g. Step II: Estimation of future needs of RR and neutron sources

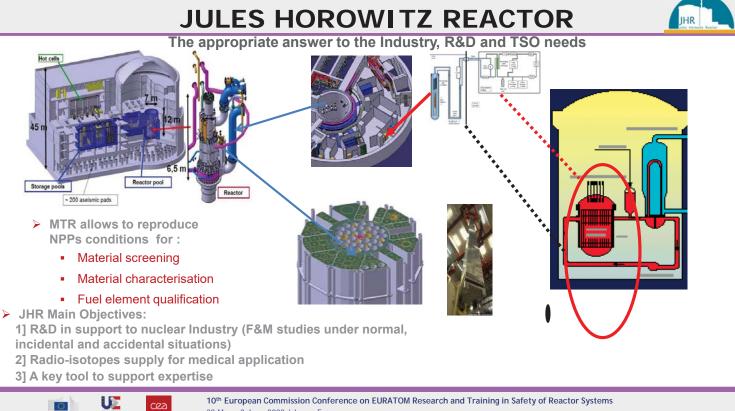
The main applications of the European RR fleet was classified into 5 categories:


a) Education and training,

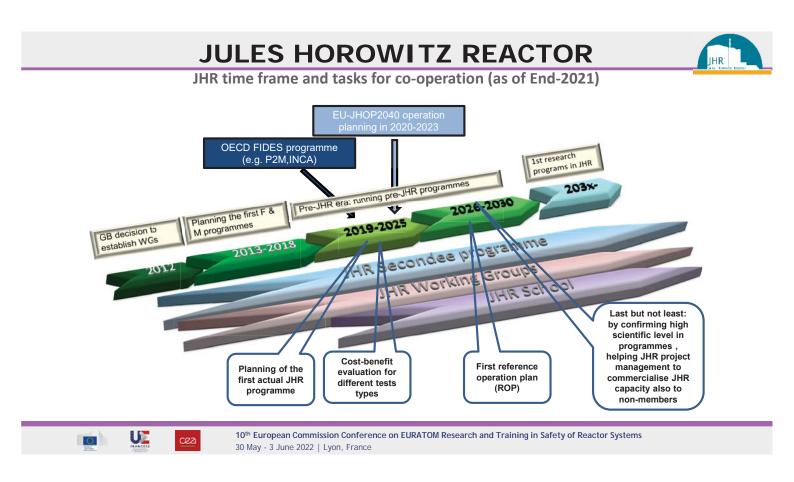
U

cea

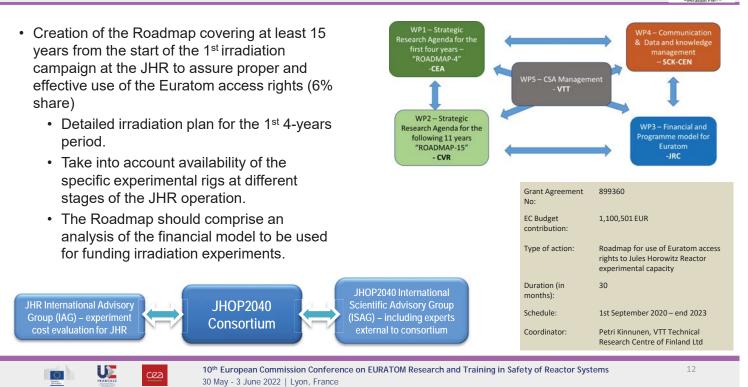
- b) Basic and fundamental research and its instruments,
- c) Medical applications, including isotope R&D as well as beam applications,
- testing, including fuel, d) Material structural material and related instrumentation,
- e) Core physics testing for reactors in "zero power" installations


10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

- The project is currently in the second year of its implementation.
- A survey was already conducted among European research reactors. Data received are from: Austria, Belgium, Czech Republic, France, Germany, Hungary, Italy, The Netherlands, Poland, Romania and Slovenia.
- A public report containing bulk considerations (to ensure confidentiality of the data transmitted to us by the RR) has been compiled and is available.
- Furthermore, three gap analysis on Research & Development, Medical applications and Education & Training has already been performed

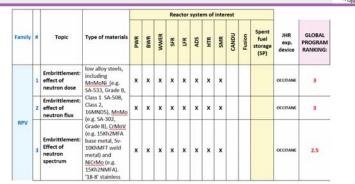


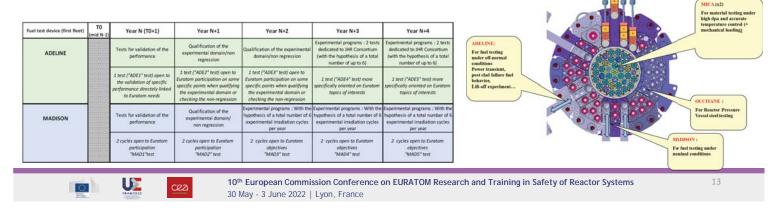
www.tourr.eu



30 May - 3 June 2022 | Lyon, France

Jules Horowitz Operation Plan 2040 – JHOP2040



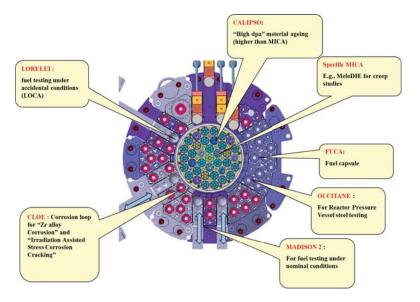

Jules Horowitz Operation Plan 2040 – JHOP2040

First 4-years irradiation period

- Latest information provided by the JHR consortium concerning the devices, irradiation locations, PIE facilities and transport capabilities has been created and updated – PUBLIC
- Final Synthesis Report First 4Yrs PUBLIC

This work has been finalized.

Jules Horowitz Operation Plan 2040 – JHOP2040


- Exposures with intermediate discharges, irradiations under variable conditions, irradiations in association with loading or corrosion
- Testing of nuclear fuels in design basis accident / design extensions conditions and innovative testing of nuclear fuels
- Testing of sensors and other novel equipment coming from the M&F needs

 \rightarrow Synthesis report on the plans for the material and fuel studies and technology development in the long term in April 2022.

cea

This work is in progress.

U

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Jules Horowitz Operation Plan 2040 – JHOP2040

Programme structure and Governance model

- Feedback for optimizing the next 4-year **Reference Operation Plan (ROP)**
- Resources analysis providing information on the available and foreseen technologies
- Guidance for the development of new experimental devices using first operation feedback
- Cost breakdown model giving the basis for evaluating the individual cost of each experiment.

JHR – Euratom stakeholders network

- Goal: to develop stable and permanent communication links with interested EU stakeholders ensuring the effective use of Euratom access rights
- Two groups of EU organisations; members of the JHR consortium and non-members but interested
- JHR-ESN objective: structure, compile and consolidate their irradiation needs for experiments at JHR in the frame of the available Euratom access rights
- Roles:
 - **Working groups**: mirroring the active JHR working groups
 - Steering Committee: EU members of the JHR Consortium and external members with geographical and functional diversity. Suggested CEA as permanent member of the SC.
 - European Commission roles: JRC as secretariat/coordinator; RTD as permanent observer

www.jhop2040-h2020.eu/

EURATOM ACCESS RIGHTS TO JHR

The EC (Euratom-JRC)- considering its contribution to the construction-gets:

6 % of guaranteed Access Rights to JHR experimental capability for the whole life of operation of the reactor

.....

- 6 % of voting rights in the JHR Consortium.
- Access Rights can be cumulated to some extend from one year to the following in order to implement greater research programs in one specific year
 - Access Rights are to be converted to Access Units, that take into account the experimental capacity of the JHR and the various factors associated to each experiment type

	Fixed part			Variable part			Impact factor (Fuel	lite (- h ell	Access u	
Kind of experimentation	Neutron flux factor	Equipment complexity factor	Utilities (water, electricity,)	Volume factor	Operation complexity factor	Services (NDE, FP lab, hot cells,)	consumption, performances,)	"Weight" total	experimen per cycle	
MADISON	1	3	2	1	3	2		12		
ADELINE	1	3	1	1	2	2		10		
MICA	1	2	1	1	2	0	1	8		
specific MICA	3	2	1	1	2	1	2	12		
LORELEI	2	3	2	1	3	3		14]	
OCCITANE	1	1	0	3	1	0	2	8		
CALIPSO	3	2	2	2	3	3	1	16		
CLOE	1	3	2	1	2	2	1	12		
Fast reactor support	3	3	2	2	3	3		16		
Boiling device	1	2	1	1	1	2		8		

EURATOM ACCESS RIGHTS TO JHR

Euratom access rights in practise:

- 6 % of Access Rights represents about 79 Access Units per year (6% of 1318).
- E.g., the EC with its 6 % Access Rights can have access each year to:
 - 7 to 8 Ramps type experiments using ADELINE device,
 - or 6 Fuel loop irradiation type experiments using MADISON device,
 - or 3 Material capsule type experiments.

U

U

cea

0

Example of loading plan A.U. = Access Units									
Type of experiment	Associated Access Unit per experiment and per cycle	Number of JHR locations for the type of experiment considered	Cumulated number of Access Unit per year (on the basis of 7 cycles per year)						
Fuel ramps studies (ADELINE)	10	3	210						
Fuelloop steady-state studies (MADISON)	12	2	168						
Fuel loop for LOCA studies (LORELEI)	14	0,3 (we consider only 3 LOCA tests per year)	30						
Fuel capsule studies (FUCA)	10	4	280						
Material capsule studies in core (MICA)	8	3	168						
Advanced MICA in core	12	2	168						
RPV studies in reflector (OCCITANE)	8	2	112						
Corrosion studies (CLOE)	12	1	84						
FR material studies	14	1	98						
TOTAL	100		1318						

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France 17

Thank you for your attention

